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LETTER TO THE EDITOR 

A coupled Korteweg-de Vries equation with dispersion 

B A Kupershmidt 
The University of Tennessee Space Institute, Tullahoma, TN 37388, USA 

Received 10 April 1985 

Abstract. A dispersive system describing a vector multiplet interacting with the Korteweg-de 
Vries field is shown to be a member of a bi-Hamiltonian integrable hierarchy. 

An integrable system can be sometimes represented as a sub- or factor-system of a 
larger integrable system. Such an extension may or may not have all the features of 
the original system. The simplest integrable system, the Kdv equation, provides an 
instructive case. It has a number of integrable two-component extensions, of the form 

U = U,,, + ~ u u ,  - 1 2 ~ ~ , ,  U = -2(u,,,+3uu,), ( 1 )  

U = u,,,+6uu,+2uux, U = 2( uu),. (2) 

The system (1) was introduced in Hirota and Satsuma (1981); it is associated with the 
affine Lie algebra Cy), and has only one Hamiltonian structure extending the second 
Hamiltonian structure of the Kdv equation (Wilson 1982). The system ( 2 )  has two 
Hamiltonian structures extending each of the two Hamiltonian structures of the Kdv 
equation (It0 1982); however, it has no dispersion in the U equation. This defect can 
be removed. 

Consider the following multicomponent extension of the Kdv equation: 

U = -u , , ,+~uu,+~u'u ,+c'u , , ,  U = ( 2 u u ) ,  - U,,C, (3) 

where U = (U', . . . , uN)', and c = (cl ,  . . . , cN) '  is a constant (column) vector. For c = 0, 
U = U, (3) collapses into (2) (after an inessential rescaling). Let us see that (3 )  is a 
bi-Hamiltonian system with an infinite number of conservation laws (CLS).  Let us 
rewrite ( 3 )  in the form 

Ho = f u 2 ,  H I = f ( u 2 + u ' u ) ,  H2 = U 3 + f U ( ' ) ~ + U ( U ' U + C ~ U ( ' ) ) ,  ( 5 )  
B' = diag(a, an), B2 = 2 B  + b, + b, ( 6 )  

.=(*), b, = diag( -a3, 0), b, = (3) a', (7) 

where a = a/ax, ( . )k = a k (  . ), and 6 H  = ( S H / S u ,  G H / S v ' ) '  is the column vector of 
functional derivatives of H. The matrix B' is skewsymmetric constant-coefficient and, 
thus, is Hamiltonian (see ch I in Manin (1979)). Let K be a commutative algebra 
with a derivation 3 :  K + K (say, K = C"(R')). Let D ( K )  be K considered as a Lie 
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algebra ('vector fields on RI') with the commutator 

[ X ,  yl = X Y ' "  - x(,) Y, X ,  Y E  K. (8) 
Let y = D( K )  K K be the semidirect product Lie algebra with the commutator 

Then B in ( 7 )  is the natural Hamiltonian form associated to ('the dual space o f )  the 
Lie algebra y.  In addition, consider bilinear forms w and Y on y whose associated 
operators b, and 6, are given in ( 7 ) :  

w (  (;), ( ;)) = -xy(3), .( (:). (;)) = xc'q'2' -p ' cY (2 ) .  

It is easy to see that w and Y are (generalised) two-cocycles on y. Therefore, the matrix 
B2 is Hamiltonian (see ch VI11 in Kupershmidt (1985).) 

Now let us show that the bi-Hamiltonian definition 

B I (  SH,,,,) = B ~ (  SH,,) ( 1 1 )  

can be iterated for all n. It will imply that we have a whole bi-Hamiltonian hierarchy 
with a common infinite set of CLS. Denote 

U,, = SH,,/Su, b,, = SH,,/So, F,, = SH,. 

Rewriting ( 4 )  in long hand, we obtain 

so that we can set 

b,+l = ~ U , U  - u',"c. ( 1 3 )  

(14 )  

F;B2( F,,) - 0. (15) 

[ 2 ( u a + a u )  -a3] (a , , )+2~ 'by '+  ~'b ' ,2 ' -0 ,  (16)  

Also, using ( l l ) ,  we get 

F;B'(F,,) - -F;B'(F,,,) = -F;B~(F,, ,+,)-  F ;+ ,B~(F , , )  = F;+,B~(F, , - , ) ,  

where a - b means: ( a  - b )  E Im a. Hence, we obtain from (14)  that 

In particular, taking m = 0 in ( 1 5 ) ,  so that Fo = (f, O)', we obtain 

which implies that we can find a,,,, in (12 )  for every n. It remains to show that, for 
each n thus obtained, vector F,, = (a,, b;)'  is a vector of functional derivatives of some 
H,,. This is equivalent (Manin 1979, Kupershmidt 1980) to showing that the FrCchet 
derivative D( E',) is symmetric, where 

with D , ( u )  = Z(~u/du" ' )a",  etc. We show that 

D', = D,, D,, := D( F,,), 
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by induction on n, the cases n = 0, 1, 2 being obviously satisfied. Taking the FrCchet 
derivative of (12), we get 

B'D,,' = B2D, +2G, (19n) 

Applying to (19n) from the right the operator B' ,  and subtracting from the result the 
composition of (19n - 1) and B2,  we find 

B' On+' B' = ( B2D,B' + B' D,B2) - B2 D,- B2 + 2Gn, 

G, := G,B' - G , - ' B ~ .  

(21) 

(22) 

Since BID,,lB' is symmetric when On+' is, to make the induction step we have to 
show that G, is symmetric, and this is a straightforward calculation based on the 
following identities 

{(a( ')+aa)[2( u a + a u )  -a3] - (2au( ')+4a( ')u - ~ ( ~ ) a }  is symmetric (23) 

[6'"'(2d~ - ca2) - (2~ '6" '+  ~ ' 6 " ' ) a ]  is symmetric (24) 
[aa(2au' - c'a ' ) ]+ = (a"'+aa)(2ua+ cd2) - (2ao - a( ' )c ) ( ' )a *  (25) 
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